The SBP-SAT technique for initial value problems

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The SBP-SAT technique for initial value problems

A detailed account of the stability and accuracy properties of the SBP-SAT technique for numerical time integration is presented. We show how the technique can be used to formulate both global and multi-stage methods with high order of accuracy for both stiff and non-stiff problems. Linear and nonlinear stability results, including A-stability, L-stability and B-stability are proven using the e...

متن کامل

MODIFIED K-STEP METHOD FOR SOLVING FUZZY INITIAL VALUE PROBLEMS

We are concerned with the development of a K−step method for the numerical solution of fuzzy initial value problems. Convergence and stability of the method are also proved in detail. Moreover, a specific method of order 4 is found. The numerical results show that the proposed fourth order method is efficient for solving fuzzy differential equations.

متن کامل

Initial value problems for second order hybrid fuzzy differential equations

Usage of fuzzy differential equations (FDEs) is a natural way to model dynamical systems under possibilistic uncertainty. We consider second order hybrid fuzzy differentia

متن کامل

Trigonometrically fitted two-step obrechkoff methods for the numerical solution of periodic initial value problems

In this paper, we present a new two-step trigonometrically fitted symmetric Obrechkoff method. The method is based on the symmetric two-step Obrechkoff method, with eighth algebraic order, high phase-lag order and is constructed to solve IVPs with periodic solutions such as orbital problems. We compare the new method to some recently constructed optimized methods from the literature. The numeri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Computational Physics

سال: 2014

ISSN: 0021-9991

DOI: 10.1016/j.jcp.2014.03.048